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1.0 INTRODUCTION

This report is a summary of the work carried out by the

Scientific Studies Corporation (SSC) team in Phase I of the "Two-

Dimensional Processing for Radar Systems" Small Business

Innovation Research (SBIR) program for Rome Laboratory (RL).

Specifically, the formulations, analyses, and simulation results

for space-time processes obtained in the program are presented.

The report includes the work carried out by the University of

Central Florida (UCF) under contract to SSC.

The model-based multichannel detection formulation is

presented in the context of a two-dimensional (2-D) representation

for space-time processes in general, and airborne surveillance

phased array radar systems in particular. For the phased array

space-time adaptive processing (STAP) problem, such a formulation

requires 2-D parametric models for the channel output process

under each one of two mutually-exclusive hypotheses. Results

presented herein demonstrate the applicability of 2-D model

identification algorithms and methods to the phased array STAP

problem. Specifically, it is demonstrated that 2-D model

identification algorithms provide representative models for

airborne surveillance phased array radar simulated data.

Furthermore, the identified models can be used to design

hypothesis filters for use in the innovations-based detection

methodology resulting from the binary hypothesis testing

formulation for moving target detection pioneered by Metford and

Haykin (1985) and extended by Michels (1991) to the complex-valued

multichannel case. This is a novel feature of the work reported

herein.

The 2-D, least-square, frequency domain (2D-LS-FD) technique

formulated by Mikhael and Yu (1994) was adopted in Phase I as the

baseline 2-D model identification method. This technique
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approximates a given 2-D complex-valued field with a 2-D rational

function model of the auto-regressive moving-average (ARMA) class.

Of course, the ARMA class includes the auto-regressive (AR) and

the moving-average (MA) classes. In this technique the ARMA

coefficients are obtained as the solution to a set of linear

equations. Excellent results have been obtained in the image

noise canceling problem (Mikhael and Yu, 1994), which is related

to clutter cancellation in radar space-time processing. This

success is duplicated herein for the STAP problem.

The 2D-LS-FD algorithm co-developer, Prof. W. B. Mikhael,

Chairman of the Electrical and Computer Engineering Department at

UCF, provided support to SSC during Phase I. Dr. Mikhael is a

Fellow of the IEEE, and has made extensive contributions in signal

and image processing. In Phase I Dr. Mikhael supervised the work

of Dr. Q. Z. Zhang, a post-doctoral appointee at UCF with

expertise in STAP. Drs. Mikhael and Zhang are both scheduled to

continue to provide support in the proposed Phase II.

This report focuses on the phased array STAP problem for

airborne surveillance radar systems since such is the main

application of interest at RL. However, other contexts are

possible, in radar as well as in other applications. As an

example, the complex-valued amplitude of the signal collected by a

radar system as a function of range and azimuth can be viewed as a

2-D image; the appropriate context for such a case is then space-

space processing. Two-dimensional modeling and identification

methods can be applied in a wide variety of military, government

non-military, and commercial areas. Specifically, such areas

include: radar array surveillance systems, active sonar array

systems, optical sensor systems, non-destructive inspection (NDI)

systems, communication systems, speech processing, medical

technology imaging, and geophysical tomography.
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An important distinction in the context of radar system

applications is that the random processes are represented as

complex-valued processes in most cases. Many time series

techniques and models have been formulated for complex- as well as

real-valued processes. However, the majority of the open-

literature results for 2-D algorithms have been established for

real-valued processes. This is true in particular for the 2D-LS-

FD algorithm selected as the baseline in Phase I. Thus, the 2D-

LS-FD algorithm was extended to handle complex-valued processes.

1.1 Problem Statement

Consider a linear array radar consisting of J equally-spaced,

identical antenna elements (or identical beamformed subarrays) in

a side-looking configuration on an airborne surveillance platform

moving at a constant speed in level flight. The array is aligned

with the aircraft's longitudinal axis, and the aircraft velocity
makes a crab angle y with the aircraft's longitudinal axis. The

radar array is radiating a coherent pulse train at a constant

radiation frequency, and at a constant pulse repetition frequency

(PRF). Each antenna element (or group of elements) is referred to

as a channel, and the ith channel output (after pulse compression,

demodulation, and sampling) corresponding to a single range

resolution cell is a complex-valued discrete-time sequence denoted
as {xi(n)}. The J scalar sequences are concatenated to form a vector

sequence {2(n)}. Process {X(n)} is assumed to be stationary, ergodic,

zero-mean, and Gaussian-distributed.

The received signal in an airborne surveillance phased array

radar can be referred to as a space-time process, wherein the

spatial connotation arises from the spatial diversity of the

antenna array elements. In general, the received signal contains

a target component, as well as receiver (broadband) noise, jammer

noise (broadband interference), and ground clutter (narrowband

3



interference) components. The one-dimensional (1-D) multichannel

(vector) representation of the radar space-time signal has been

adopted extensively in the development and analysis of optimum

joint-domain adaptive algorithms and sub-optimum block-covariance

algorithms for STAP, which encompasses target detection and

interference rejection in airborne surveillance radar arrays

(Brennan and Reed [1973]; Jaffer et al. [1991]; Ward [1994]).

These algorithms are often referred to as the conventional (or

classical) STAP algorithms. More recently, Michels (1991) and

Romdn and Davis (1993a; 1993b) have adopted the 1-D vector

representation for the development of multichannel AR and state-

space models, respectively, for joint-domain innovations-based

detection algorithms. Alternatively, a space-time signal can be
represented as a 2-D scalar process. The 2-D representation is

essential for visualizing and understanding the spectral energy
and correlation characteristics of the total signal, and of the

ground clutter component in particular. This representation also

offers algorithmic and modeling advantages.

With respect to model-based detection for the airborne
surveillance phased array radar STAP problem, 1-D models offer

dynamic and static degrees of freedom in the temporal axis, but
only static degrees of freedom in the spatial axis (see Sections

A.2 and A.4). In contrast, 2-D models offer dynamic and static
degrees of freedom in both axes (space and time). Thus, a model-

based detection methodology using 2-D scalar models is inherently

better-suited to the cases wherein channel-to-channel correlation
exhibits a complicated structure. Such cases occur physically

when the platform and scenario parameters lead to a non-integer-

valued clutter ridge slope parameter, to non-zero misalignment

between the array longitudinal axis and the platform velocity
vector, and to non-zero internal clutter motion. These conditions

are common in airborne surveillance radar scenarios.
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1.2 Report Overview

Model-based multichannel detection in the context of the 2-D

representation of the channel output vector process is discussed

in Section 2.0, including a summary of 2-D time series models.

The 2D-LS-FD model identification method and its formulation for

STAP are discussed in Section 3.0. The airborne surveillance

phased array radar application is discussed in Section 4.0,

including simulation-based results generated using the SSC-

developed radar data generation software described in Vol. II of

(Roman and Davis, 1997). A summary and suggestions for further

work are presented in Section 5.0. Appendix A presents a 2-D

representation for 1-D vector state-space models, which allows

comparison of results obtained using state-space model

identification algorithms (Roman and Davis, 1997) with those

obtained using the 2D-LS-FD algorithm.
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2.0 MODEL-BASED MULTICHANNEL DETECTION

The model-based approach to multichannel detection involves

the generation of an analytic model for the multichannel system,

utilization of such model to process the multichannel data, and

determination of a detection decision by applying a detection rule

to the processed data. A model class is selected to represent the

multichannel system, and the model parameter values determine the

specific system model. Model parameters can be identified on-

line, by applying an identification algorithm to the received

channel data. Alternatively, model parameters can be identified

off-line for various conditions and stored in the processor memory

to be accessed in real-time as required.

For the work reported herein the time series class of 2-D,

linear, shift-invariant parametric models is selected. This class

includes MA, AR, and ARMA models. Emphasis is placed on the ARMA

model subclass because it is more general than the MA and AR

subclasses. One-dimensional, vector (multichannel) models have

been applied to the multichannel detection problem by Michels

(1991) and Roman and Davis (1993a; 1993b), and the success

obtained in their work provided motivation for this research.

Utilization of the 2-D model class in the context of multichannel

detection, however, is the most important and novel aspect of the

work reported herein.

Two types of 2-D model parameter estimation algorithms can be

defined: (a) algorithms which operate on the channel output

correlation sequence, and (b) algorithms which operate on the

channel output data directly, without calculating correlation

information. The AR model identification algorithms discussed by

Therrien (1986) are examples of the former, and the 2D-LS-FD

algorithm formulated by Mikhael and Yu (1994) is an example of the

latter. The 2D-LS-FD is the algorithm selected for this program.
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As the name implies, this algorithm is based on the least-square

philosophy, in contrast to the stochastic philosophy prevalent in

most of the model identification literature.

2.1 Multichannel Detection

Detection problems in the context of radar systems (as well

as in other applications) can be postulated as a binary hypothesis

testing problem. Specifically, the class of problems addressed in

this report involve the following two hypotheses:

H0 : Target (desired signal component) is absent

Hj: Target (desired signal component) is present

H0 is referred to as the null hypothesis, and H, is the alternative

hypothesis. The model-based approach to detection with phased

array radars is couched on the assumption that the process at the

array output can be described by a linear parametric model under

each of the two hypotheses, and that the parametric models that

correspond to the two hypotheses are sufficiently different to

allow selection of the correct hypothesis by the evaluation of

measures that are sensitive to those differences. In innovations-

based detection, as formulated by Medford and Haykin (1985),

Michels (1991), and others, two parallel paths are established for

processing the received radar signal. This is illustrated in

Figure 2-1 for a general case with off-line parameter estimation.

In the top path the received radar sequence, {x(n)}, is processed

with a filter tuned to whiten the sequence when H0 is true, and in

the bottom path the received radar sequence is processed with a
filter tuned to whiten the sequence when H, is true. The filter

outputs, {y(nlHi) Ii= 0,1;n = 0,1 .... , N-1}, are labeled as residuals;

these residuals are true innovations processes when the data

condition (hypothesis) matches the filter type. This architecture

7



is referred to herein as the multichannel innovations-based

detection algorithm (MIBDA).

Residual
NULLTA Sequence

HYPOTHESIS
FILTER {_(ni Ho))

SPRE-STORED 
RESIDUAL / DETECTION

{xn) • FILTER 
STATISTICS 

DECISION

SELECTION 
GENERATION | CALCULATION

S R~esidual

_I ALTERNATIVE 
Sequence 

Threshold

HYPOTHESIS
FILTER {I_(n HI1 ) )

Figure 2-1. Multichannel innovations-based detection architecture
with off-line hypothesis filter design.

An alternative to the MIBDA detection approach is the model-

based or parametric adaptive matched filter (PAMF) formulated by
Rangaswamy and Michels (1997). In essence, the PAMF consists of

the null hypothesis filter path in Figure 2-1. Of course, the

detection statistic and decision rule are modified appropriately.

2.2 Scalar, Two-Dimensional Representation of the Channel

Output Seauence

The channel output vector sequence {x(n)} can be viewed as a

scalar 2-D sequence (Dudgeon and Mersereau, 1984). Let channel J

be the temporal and spatial reference for the array, and define

the following association,
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(2-1) Xj-k(n) = x(n,k) On•N-1; Ok•J-1

The process {x(n,k)} has a scalar 2-D power spectrum denoted as
{SXX(fd,fs)}, and a scalar 2-D auto-covariance sequence (ACS) denoted
as {rxx(m,e)}, where (m,e) is the lag pair corresponding to the

frequency pair (d,fs)"

The association defined by Equation (2-1) is illustrated in
Figure 2-2; this association was adopted herein because it is

consistent with the relation between multichannel 1-D and scalar
2-D systems demonstrated by Therrien (1981). Alternatives to
Equation (2-1) can be defined, such as {xk1(n)=x(n,k)In=0,1,...,N-1;k

= 0,1, ... , J-1}. This alternative definition corresponds to the

MATLAB software default array definition convention.

A block diagram equivalent to that of Figure 2-1 can be
defined using the scalar 2-D process {x(n,k)} as its input (see

Section 3.3). In such a diagram the functionality of the blocks
remains the same, but the specific content of each block must
accommodate the differences in model class and implementation

aspects.

As stated earlier, the time series subclass of 2-D, linear,

shift-invariant parametric models was selected to represent the
channel output under each of the two hypotheses. The work in

Phase I addressed two important issues beyond the work of Michels
(1991). First, the channel output is represented as a 2-D scalar
random process, with the attendant increase in modeling degrees-

of-freedom (independent dynamic and static modeling capability
along each axis). Second, the complete time series model class
(MA, AR, and ARMA models) was considered, with emphasis on ARMA
models due to their higher degree of modeling capacity.

9



k Two-Dimensional Plane

Data array is obtained from the
one-dimensional, J-element, {x~f,)
channel output vector sequence:
{_x_(n) I n = O,1,, N-1)}

x1(O) x1(1) ..- x1(N-1)

x2(0) x2(1) ... x2(N-1)

1 -D to 2-D Correspondence

_Xj(0) x j(1) ... xj(N-1) Xj-k (n)=x(n,k) k=0, 1, .. ,J-1

Figure 2-2. One-D and two-D channel output data representations.

2.3 Two-Dimensional Time Series Models

Model-based detection as considered herein is predicated on

the representation of the channel output process {x(n,k)} as the

output of a 2-D time series model driven by white noise.

Furthermore, the time series model output is corrupted by additive

white noise. To be precise, such a representation is approximate

in the case of radar data. Nevertheless, in practice time series

models have been shown to provide a good fit to radar data; this

point is underscored for 2-D models by the results in Section 4.0.

As stated previously, the 2-D process {x(n,k)} is assumed to be

represented as
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(2-2) x(n,k) = y(n,k) + w(n,k)

where y(n,k) is the output of a linear, shift-invariant, 2-D time

series model, and w(n,k) is a 2-D, zero-mean, Gaussian-distributed,

white noise process. The processes {y(n,k)} and {w(n,k)} are

independent.

A 2-D ARMA(P,Q) process {y(n,k)} is defined as

P P Q Q

(2-3) y(n,k)=- I ,a(id,is)y(n-id,k-is) + Y Xb(id,is)u(n-id,k-is)
id= 1 isd= 0  is=0

where the input {u(n,k)} is a 2-D, zero-mean, Gaussian-distributed,
white noise process, and {a(id,is)} and {b(id,is)} are complex-valued,

constant coefficients referred to as the AR and the MA parameters,
respectively. When P=O Equation (2-3) is an MA(Q) process,

whereas when Q=O Equation (2-3) is an AR(P) process. The transfer

function associated with model (2-3) is obtained as the 2-D Z-

transform of Equation (2-3). That is, the transfer function is a

2-D, complex-valued, rational function of the form

Q QI l b(qd, qsZ dqz s q

(2-4) T(Zd,Zs)= B(ZdZs) = qd=Oqs=0
A(ZdZs) ~P P d z Pdz _PsA(Zd'Zs l /,a(Pd, Ps )ZdP Zsp

Pd =0 P- =0

(2-5) a(0,0) = 1

with complex-valued variables Zd and Zs, and where A(zdzs) and

B(Zd,zs) are the AR and MA scalar, 2-D polynomials, respectively.

As indicated in Equation (2-5), the leading coefficient of A(zd,ZS)

is unity. This follows from Equation (2-3), and is the 2-D

version of a monic polynomial in I-D. And the 2-D frequency

11



response of model (2-3), which is denoted as T(fdfs), is obtained by

restricting the complex variables Zd and Zs to the unit surface,

(2-6) Zd = ej2fd

(2-7) Zs = ei2 fs

with fd and fs the normalized temporal (Doppler) and spatial

frequencies, respectively.

In the context of MIBDA processing for surveillance phased

array radar systems, modeling involves determination of the
parameters {a(id,is)l and {b(id,is)} to represent a moving target, jamming

interference, and ground clutter. These channel output components

must be modeled either individually, or in any one of the possible

combinations, as dictated by the scenario conditions and the

processor architecture. For PAMF processing only ground clutter

and/or jamming interference must be modeled. In Phase I, emphasis

was placed in modeling ground clutter since it drives the

requirements for a 2-D model. Having identified the model

parameters which represent the process, the associated 2-D

whitening (inverse) filter is available directly. Specifically,

given the channel output 2-D sequence, {x(n,k)}, the whitening filter

residual sequence, {v(n,k)}, is obtained as

a Q P P

(2-8) v(n,k)=- b(id,is)v(n-id,k-is) + I, _a(id,is)x(n-idk-iS)
id=1  is=l id=O 0s=O

If model (2-2)-(2-3) represents the channel output exactly and the

noise {w(n,k)} is zero, then {v(n,k)} is a true innovations sequence.

For any other conditions, the filter residual approximates an

innovations. Notice that the whitening filter is also an ARMA

system, but with the roles of the AR and MA coefficients reversed.

12



A 2-D model of the form in Equation (2-3) is referred to as a

first-quadrant system since only values in the first quadrant of

the input and output 2-D planes (except for initial conditions)

are used to generate the system output. Model (2-3) is causal, in

loose analogy with the 1-D case, since only past outputs and

present and past inputs are used to generate the present output.

In the phased array radar space-time problem causality along the

time axis is an inherent feature of the channel output. In

contrast, the issue of causality along the spatial axis is not

clear because all channels generate an output at each temporal

sampling instant. Model (2-3) is also recursively computable

(Dudgeon and Mersereau, 1984), which simplifies hardware

implementation. Other region of support options, such as the non-

symmetric half plane (NSHP), are of interest and will be

considered in Phase II.

Two-dimensional time series models have several features

quite distinct from their 1-D counterparts. To begin, 2-D models

offer more dynamic as well as static modeling degrees-of-freedom.

On the negative side, most 2-D polynomials are not factorable.
Thus, polynomials A(zd,zs) and B(Zd,Zs) identified by an algorithm are

likely to be unfactorizable. This complicates key issues such as

stability determination. In 2-D systems, poles and zeros can

occur as functions rather than as an isolated point (Dudgeon and

Mersereau, 1984). Also, causality and region of support issues

often present a variety of alternatives, in contrast with single

options in 1-D systems. All cases considered in Phase I resulted

in a stable 2-D model.

Estimation of the parameters for the 2-D scalar time series

models has been addressed by several authors (see [Marple, 1987],

[Dudgeon and Mersereau, 1984], [Therrien, 1986] and the references

therein). For AR models most algorithms require generation of the

ACS of the process, and the algorithms are extensions of the I-D
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case. In contrast with the 1-D case, for 2-D systems the maximum

entropy method (MEM) is not equivalent to the AR method. Further,

the MEM parameters are obtained via optimization procedures, with

their attendant convergence and other such difficulties. Most 2-D

model identification algorithms are formulated in a stochastic

framework and require the ACS (in practice, only an estimate of

the ACS is available). An exception is the 2D-LS-FD method

developed recently by Mikhael and Yu (1994). The 2D-LS-FD

algorithm is a least-square method, as its name implies, and is

the algorithm selected in Phase I.

A generalized version of the 2-D ARMA(P,Q) process can be

defined by allowing distinct values for the model order along each
dimension. Specifically, a 2-D ARMA(P,Q) process {y(n,k)} is defined

as

Pd Ps Qd Q,

(2-9) y(n,k)=- X ja(id,is)y(n-id,k-is) + : X b(id,is)u(n-id,k-is)
id=1 i1=l id=O is=O

where the input process and system parameters are as defined
previously, and P=[PdPs],' -=[Qd,Qs]. The transfer function and

residual for model (2-9) follow trivially. A system of the form

(2-9) is a more relevant model for the STAP application because

the data duration along the temporal axis is usually longer than

the data duration along the spatial axis (the data matrix is

rectangular).
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3.0 TWO-DIMENSIONAL, LEAST-SQUARE, FREQUENCY-DOMAIN (2D-

LS-FD) ALGORITHM FOR MIBDA PROCESSING

The 2D-LS-FD method is based on a modification to the output

error model method, and is an extension of prior work for the 1-D

case. The output error model method is a model matching approach,

which inherently invokes least-squares optimization. Such a

formulation is in contrast with the stochastic formulation common

to most model identification algorithms. The method can be viewed

also as a direct approach, since the algorithm operates on the

channel output data directly, without the requirement to estimate

the channel output ACS. A key feature of the 2D-LS-FD method is

that the parameters of the 2-D polynomial model are calculated by

solving a linear set of equations in the frequency domain.

Another important feature of the 2D-LS-FD method is that an

indication of model order is available by the dimension of a

subspace, which translates into verifying the rank of a matrix.

Additionally, the 2D-LS-FD method admits alternative algorithmic

variations, which provides a wealth of possible approaches to

model the airborne surveillance phased array radar return. Due to

these features, the 2D-LS-FD method was the baseline algorithm for

Phase I.

Originally, the 2D-LS-FD method was developed for real-valued

data, and for a square ARMA model, Equation (2-3), since these are

the conditions that apply in image processing applications such as

data compression and noise cancellation. In Phase I the method

was extended to handle the complex-valued case and the rectangular

ARMA model, Equation (2-9). Both extensions turned out to be

straightforward. The main issue in the extension to complex-

valued data is to insure that the rules of complex-valued

operations (inner product; 2-norm; etc.) are satisfied. A MATLAB-

based software implementation of a fast algorithm was developed

also in Phase I.
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A MATLAB set of routines was generated to model the complex-

valued version of the 2D-LS-FD algorithm. These routines were

tested and validated using several test cases, including an

ARMA(I,1) system, and a signal with a power spectrum consisting of

the sum of three Gaussian-shaped peaks. Once the software was

validated, it was exercised to model and to whiten simulated

airborne surveillance phased array radar data generated with the

SSC-generated simulation for a variety of system parameter values

and scenario conditions. The SSC simulation is described in Vol.

II of the report by Romdn and Davis (1997).

Model order determination is a fundamental issue for all

model identification algorithms, including the 2D-LS-FD method.

The approach postulated by SSC and pursued in Phase I is based on

the characteristics of the residual generated using the inverse

(whitening) system of the identified model.

3.1 2D-LS-FD Method for 2-D Model Identification

Consider the output error model configuration defined in
Figure 3-1, which is presented in 2-D Z-transform domain (all

functions are complex-valued). In Figure 3-1, the 2-D function
Tu(Zd,zs) represents an unknown system, T(zd,zs) represents an ARMA

model (2-9), U(Zd,zs) is the 2-D driving white noise function, and

Eo(Zd,Zs) is the 2-D error function. It is important to recognize

that the unknown system is unrestricted (that is, it can be

different from an ARMA). In equation form, the output error is

(3-1) Eo(Zd,Zs) = U(Zd,Zs) [Tu(Zd,Zs) - T(Zd,Zs)]

and the 2-norm of the output error restricted to the unit surface

(Equations (2-6) and (2-7)) is defined as

16



0.5 0.5 -1/2

(3-2) Eo (fd'fs )112=[ f Eo(fd,fs)12 dfddfs
-0.5 -0.5

Minimization of the 2-norm in Equation (3-2) with respect to the

ARMA model parameters generates a model which is an optimum

approximation to the unknown system for the selected model order.

The function U(fd,fs) serves as a weighting term; as such, Equation

(3-2) represents a weighted 2-norm minimization.

Most methods available for minimizing (3-2) are nonlinear,

which presents computational problems and convergence issues.

Recently, however, Mikhael and Yu (1994) have developed a

formulation which leads to a linear method. Their formulation is

based on the variation of Figure 3-1 shown in Figure 3-2 for the

case of an ARMA model, and is referred to as the equation error

model method. In this report the equation error is denoted with

subscript "M" in order to emphasize the difference between the two

formulations. Notice that all 2-D functions in Figure 3-2 are

restricted to the unit surface in the frequency domain. In

equation form, the equation error of Figure 3-2 is

(3-3) Em(fdfs) = U(fd,fs) [Tu(fd,fs) A(fd,fs) - B(fd,fs)]

Minimization of the 2-norm of the equation error Em(fd,fs) leads to a

linear set of equations in the unknown parameters {a(id,is)1 and

{b(id,is)1. The linear set of equations has a solution provided the

number of equations is more than or equal to the number of unknown

parameters, and provided that the parameter set is constrained
appropriately. In this modified formulation the function U(fd,fS)

still plays the role of a weighting term.
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UNKNOWN
SYSTEM

U(zdzS) Eo(zduzS)•/ZdZ/ • / ) T(Eoz0,z)

Figure 3-1. Output error model formulation for 2-D system
modeling.

UNKNOWN

SYSTEM

STu(fd,fs)I A(fd,fs)

UWdlfs) /,A - Em(fdlfs)

UB~fd~fS)

Figure 3-2. Equation error model formulation for input-driven 2-D
system modeling.
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3.2 Space-Time Data Modeling Using the 2D-LS-FD Method

In both formulations discussed above (Figures 3-1 and 3-2)

the unknown system is available to be driven by the input function

{u(n,k)}, and the input function is known. Neither of these two

conditions is true for modeling the space-time phased array radar

signal of interest herein. Specifically, in the STAP channel

output modeling case only the output of the "unknown system" is

available. Here the quotation marks emphasize the fact that the

channel output is not the output of a particular ARMA system, but

rather, that it is to be approximated as such. In the model

matching sense, the channel output sequence is the output of an

unknown model with input {u(n,k)}. If the input is the unit sample

sequence, u(n,k)=6(n,k), then {x(n,k)} can be viewed as the impulse

response of the unknown system,

(3-4) X(fd,fs) = Tu(fd,fs) U(fd,fs) = Tu(fd,fs)

In Equation (3-4) the second equality is valid because the

discrete Fourier transform (DFT) of the unit sample sequence is

(3-5) U(fd,fs) = 1 -0.5 •fd•O. 5 ; -0.5 0fs O.5

For this input condition, the equation error is expressed as

(3-6) E(fd,fs) = X(fd,fs) A(fd,fs) - B(fd,fs)

This equation error formulation is denoted without subscript in

order to emphasize the difference with the previous cases. Notice

the similarity in form between the expressions for the equation
errors Em(fd,fs) and E(fd,fs). A block diagram for the equation error

formulation (3-6) is illustrated in Figure 3-3, where the dashed

lines represent the condition that the unknown system is

unavailable and thus cannot be driven by the input sequence.
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...UNKNOWN "X'fd~fs) Afd~fs) -SSE
/ ••'A •E(fd,fs)

U (fd fs) B(fd,fs)

Figure 3-3. Equation error model formulation for modeling the
space-time phased array radar process.

Minimization of the 2-norm of the equation error E(fd,fs) with

respect to the unknown ARMA coefficients is a finite-dimensional,

linear-space minimization problem. Mikhael and Yu (1994) applied

the Orthogonality Theorem to the problem, which leads to a linear
set of equations in the unknown parameters {a(id,is)l and {b(id,is)).

Such equations have a solution provided the number of equations

exceeds the number of unknown parameters. Furthermore, it is

necessary to place appropriate constraints in order to avoid the
trivial solution, A(fd,fs)=0 and B(fd,fs)=0. One such constraint is to

set

P P

(3-7a) A(fd,fS)=1+A0(fd,fs)=1+ j , a(Pd,Ps)e-J2 fdPd e-j2cfsps

Pda=0 PS=0

(3-7b) a(0,0) = 0

This constraint is equivalent to the definition of A(fd,fs) given in

Equations (2-4) and (2-5). Also, notice that the monic feature of
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the 2-D polynomial A(fd,fs) is retained. Substitution of this

constraint into Equation (3-6) results in

(3-8) E(fd,fS) = X(fd,fs) - [B(fd,fs) - X(fd,fs) AO(fdlfs)] = X(fd,fs) - G(fd,fs)

with the 2-D function G(fdfs) defined implicitly as

(3-9) G(fd,fs) = B(fd,fs) - X(fd,fs) AO(fd,fs)

Function G(fd,fs) is an auxiliary function introduced to simplify the

analysis. Minimizing the 2-norm of the equation error with

respect to the unknown coefficients corresponds to minimizing the
difference X(fd,fs)-G(fd,fs). Computational advantages accrue because

the problem is formulated in the frequency domain, and the

resulting solution is optimal in the least-square sense (Mikhael

and Yu, 1994) . Once the system model parameters have been

identified, the inverse (whitening) system is obtained as the
inverse of Equation (2-4), since T(fd,fs) is a scalar function.

This method is related to that proposed by Shanks et al.

(1972) for the design of 2-D infinite impulse response filters.

Shanks' method, however, is formulated in the space-time domain

(as opposed to the frequency domain), and its algorithmic

implementation is different.

3.3 Two-Dimensional MIBDA

In the approach pursued in Phase I, the MIBDA in Figure 2-1

is applicable for 2-D processing also, with the modification that

a 2-D ARMA whitening filter is generated for each of the two

hypotheses in the MIBDA. However, 2-D convolution in the time

domain is a computationally-intensive operation, so an

architecture with frequency-domain convolution is preferred. Such

an architecture is presented in Figure 3-4 for the case of off-
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line filter design. A similar architecture can be defined for the

case of on-line filter design. In the architecture of Figure 3-4,

the Pre-Processor block can include a variety of operations.

Several such functions were identified in Phase I, and evaluated

to different degrees of detail. The most important operations for

the Pre-Processor block are presented next, in the preferred order

of application to the data.

0 Spatial nulling of the 1-D vector sequence (this eliminates

the effects of barrage-type, point-location jammers, which

simplifies the data structure in the frequency domain).

0 1-D vector to 2-D scalar transformation (this is only a

conceptual operation since the storage locations of the

data remain unchanged).
0 Application of a data window (this reduces the effects of

sidelobe leakage, at the expense of a loss in resolution,

which results in broader spectral features).

In a given configuration, only a subset of these operations may be

applied to the data. Optimization of the pre-processing functions

will be carried out in the proposed Phase II. This includes

analyses such as performance variation as a function of window

type applied.

Residual

A ULLENTV 2-D Sqec

HYPOTHESIS INVERSE
FILTER FFT {Y(nlHo))

S FILTER STATISTICS DECISION

{•()} | POCESO ISELECTION GENERA71ON I CALCULATON /

ATRAIED Sequence Threshold
SHYPOTHESIS - %IIVESFILTER j F• IxFT)

Figure 3-4. Multichannel innovations-based detector architecture
for 2-D data representation.
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The 2-D FFT operation can be followed by an averaging step,
which is not shown in Figure 3-4. Averaging the spectral

components over several realizations generates a more accurate

estimate of the frequency-domain representation. This statement

is applicable during hypothesis filter design, as well as in

processor architecture design.

It is important to note that, with respect to pre-processing

and spectral averaging, the MIBDA design must be compatible with

the procedure utilized during hypothesis filter design. For

example, if a data window of a specific type is used in the design

of the hypothesis filters, then the same data window must be

applied in the MIBDA implementation. Likewise, if the hypothesis
filters are designed with spectral-domain averaging over K

realizations, then the MIBDA must include spectral-domain

averaging over K realizations also.

Consider now the 2-D inverse FFT block in Figure 3-4, which
includes implicitly the 2-D scalar to 1-D vector transformation.

This block is necessary if the hypothesis filter design criteria

and/or the detection criteria and decision rules are to be applied

in the space-time domain, as opposed to the frequency domain. In

a prior program (Romdn and Davis, 1997) SSC developed a set of
hypothesis filter design criteria that are applied in the space-

time domain for the I-D vector MIBDA. Those criteria have been

extended in Phase I to the 2-D scalar case, but remain to be
implemented in software. Similarly, the likelihood ratio detector

used in the 1-D vector MIBDA can be extended to the 2-D scalar
case and applied in the space-time domain. Thus, based on the

criteria considered thus far, the inverse FFT step is required.

However, the alternative of frequency-domain detection is

computationally attractive, and will be investigated in the

proposed Phase II.
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3.4 Model Order Determination

Determination of model order is a decision required of all

model identification algorithms in applications where the true

order of the system generating the channel output data is unknown,

or where the process to be modeled is generated by a system which

belongs to a different model class. In the second case the model

obtained is a "representation model," as opposed to a "physical

model" (a model based on accurate analyses of the underlying

physical processes). Model order determination is always a

difficult problem, and the approaches are often heuristic, at

least in part. The approach selected herein is based on the

output power (variance) of the model inverse (whitening filter),

since the best-fitting model would generate the most whitening (in

the sense of whitening the ensemble, not just a particular

realization). Such a criterion has to be applied judiciously,

however, because it can lead to over-parameterized models since

the model with the most possible degrees-of-freedom (number of

parameters to be identified) is likely to whiten a specific

realization the most. Thus, for a criterion based on the residual

power, the model order sought is that value at which the plot of

residual power versus model order indicates diminishing returns

for further increases in model order (such a value is indicated by

a "knee" in the curve).

For a zero-mean 2-D residual sequence of the form in Equation

(2-8), the power (variance) is estimated as

N-1 J-1
(3-10) v JN 2

n=O k=O

In the context of model order determination adopted herein, the
power estimate &2 is plotted as a function of the order of the
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model used to generate the residual sequence, and the model order

is selected as the value at which the reduction in residual power

is small (in relation to prior reductions) for a unit increase in

model order.

A better criterion is one which considers also the effect of

the given number of 2-D data points (JN) and the number of

parameters being estimated for the model. Akaike (1969; 1970)

proposed a simple criterion for AR model order determination

referred to as the final prediction error (FPE) which accounts for

these two effects. In the FPE criterion the residual power

estimate obtained using the Yule-Walker AR parameter estimation

algorithm is modified by a multiplicative factor which is a non-

decreasing function of the number of data points and the number of

parameters being estimated for the model order being evaluated.
For a 2-D ARMA(PdPsQdQs) model and a JxN data matrix, the

multiplicative factor corresponding to the one used by Akaike is

of the form

JN+M
(3-11) fM(M) = 0• M < JN

JN-M

where M is the number of parameters being estimated,

(3-12) M = (Pd + 1)(Ps + 1) + (Qd + 1)(Qs + 1) - 1

And for the special case where Qd = Pd and Q. = PS,

(3-13) M =2 (Pd+ 1)(PS+ 1)- 1

Notice that the function f(M) is non-decreasing. Thus, Akaike's

FPE criterion takes into consideration the following two

conditions: (a) as the model order increases, the fit of the model

to the given data improves (the residual power should decrease
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monotonically with increasing model order); and (b) as the model

order increases, the fit of the model to an independent

realization of the same stochastic process becomes worse on the

average (modeling degrees-of-freedom beyond those necessary to

model a process are allocated by an identification algorithm to

modeling features present only in the realizations used to

identify the model).

Akaike's FPE criterion has been the subject of multiple

studies, many of which resulted in a modification to the criterion

expression. In most cases the FPE has provided a good estimate of

the true model order. The extension of the FPE to the 2-D case

will be evaluated in the proposed Phase II.
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4.0 AIRBORNE SURVEILLANCE PHASED ARRAY RADAR APPLICATION

Airborne surveillance for moving target detection using

phased array radar systems is one of the major technology thrusts

at RL. Consequently, the emphasis devoted to that application in

Phase I reflects that significance. The MATLAB software

implementation of the 2D-LS-FD algorithm was exercised with

simulated multichannel data generated using the SSC-developed

software simulation package (Romdn and Davis, 1997), and selected

results are presented herein.

The SSC airborne surveillance phased array radar software

model (Vol. II of [Romdn and Davis, 1997]) is defined for a side-

looking, linear-, phased array radar configuration, with azimuth

scanning capability of ±90 deg from boresight (the effect of

multiple elevation channels beamformed into a single channel is

included in the model). Each component (target; noise; jammer;

clutter) is modeled independently of the others. The structure

selected to model each component allows generation of the true

covariance matrix sequence, as well as generation of independent

statistical data realizations. Moving targets are modeled as

point targets in azimuth and elevation, and each moving target is

modeled as the output of a first-order linear system in state-

space form. This allows for a wide range of conditions (including

Swerling Cases 1 through 4 as well as the deterministic case), in
a simple and general format. With this structure Gs targets are

grouped as a Gsth-order linear system. Barrage-type jammers are

modeled as point sources of Gaussian-distributed broadband noise

in azimuth and elevation. Receiver noise is modeled as

uncorrelated in time (pulse-to-pulse) as well as in space

(channel-to-channel). Ground clutter is modeled as a large number

of statistically-independent clutter patches, with each clutter

patch consisting of a large number of individual re-radiators.
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Table 4-1 lists the baseline simulation parameter values used

to obtain most of the modeling and filtering (whitening) results

presented in this section. Clutter-to-noise ratio (CNR) for both

sets of the baseline conditions (crab angle values of y=0 deg and

y=20 deg) is 47.75 dB. Notice that jammers are not included in

these results; this is because the emphasis of the simulation-

based analyses has been for ground clutter in receiver noise since

it presents the most significant modeling challenge. Also, in one

of the alternative configurations jammers are canceled spatially

in the pre-processing step. Modeling and whitening runs with

jammers present have been made, and the results are similar to

those for clutter only. The model structure analysis results

shown herein were obtained for parameter values and simulation

conditions different from those in the table; the actual parameter

values used in such cases are stated clearly. Several cases were

run also with the factored form of the classical optimal joint-

domain method (Brennan and Reed, 1973), in order to compare the

whitening capability of the optimum method with that of the 2D-LS-

FD method. Those results show that the 2D-LS-FD method provides

significantly more whitening capability than the classical optimal

joint-domain method with a limited support size for the sample

covariance matrix.

Alternative modeling configurations of the 2D-LS-FD method

(ARMA; AR; MA) were evaluated in the context of the airborne

surveillance radar array STAP application, with ARMA modeling

providing the best model fit and whitening performance. This

result is as expected since the ARMA(P,Q) model with PŽ!Q provides

a larger number of modeling degrees-of-freedom than an AR(P) or an

MA(P), with the same dynamic realization requirements.

Furthermore, the ARMA(P,Q) model with PŽQ offers more versatility

than an AR(P+Q) or an MA(P+Q). Simulation results also indicate

that an ARMA(P,P) model in general provides better modeling than an

ARMA(R,Q) with R<Q and R+Q<2P.
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PARAMETER PARAMETER (UNITS) VALUE
TYPE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Number of linear array elements, J 8

Number of points in one CPI, N 64

Number of elevation axis elements, Je 4

Array mainbeam azimuth angle, phiO (deg) 30

Peak transmitted power, Pt (kW) 200

Pulse (uncompressed) duration, Tu (gsec) 200

RADAR Pulse repetition frequency (Hz) 300

ARRAY Radiation frequency, fC (MHz) 450

SYSTEM Receiver bandwidth, fB (MHz) 4

Transmit pattern gain, Go (dB) 22

Receive element gain, Ge (dB) 4

Receive element backlobe pattern attenuation, Gb (dB) -30

Noise figure, Fn (dB) 3

System losses, Ls (dB) 4

Transmit pattern array option, patopt UNIFORM

Platform altitude, Hp (km) 9

SURVEILLANCE Platform velocity, Vp (m/sec) 50

SCENARIO Range to principal ground clutter ring, rc (km) 130

Aircraft platform crab angle, gamma (deg) 0; 20

Narrowband process amplitude, a 0

Target radial velocity, Vt (m/sec) 0

TARGET Target azimuth angle, phit (deg) 0

Target elevation angle, thetat (deg) 0

Signal-to-noise ratio, SNR (dB) 0

Jammer azimuth angle, phii (deg) 0

INTERFERENCE Jammer elevation angle, thetai (deg) 0

Jammer power, vari 0

GROUND CLUTTER Number of ground patches illuminated by mainbeam, N¢ 361

ARRAY NOISE Receiver noise power per channel, varn 1
SIMULATION Number of realizations used in filter design, Nrd 20

PARAMETERS Number of realizations used in filter evaluation, Nre 20

Table 4-1. System parameters and scenario conditions for baseline
simulation results.
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4.1 Conventional Optimal Joint-Domain Method

Consider the JN-element data vector Xk formed by concatenating

the N J-element vectors {X(n)} of the kth range cell in a coherent

processing interval (CPI), and let 1ý denote the JNxJN sample

covariance matrix estimate obtained by averaging over K

independent realizations of the data vector (K range cells, not

necessarily contiguous). That is,

1 K

(4-1) -k-kk

As is well-known, the optimal weight vector is determined as

(4-2) WO k=

where S is the known, JN-element steering vector. The optimal

weight vector is applied to the data in order to generate the
detection statistic, ri, as

Equations (4-2) and (4-3) exhibit the factored form of the optimal

joint-domain weight vector: the t-1/2 operator is a whitening

filter for x, and the SH!-/2 operator is a matched filter. This

factored form is illustrated as a block diagram in Figure 4-1.

The intermediate variable in the factored form,

(4-4) Eo=t 1/2x

is defined herein as a JN-element residual vector. This residual

vector can be transformed into a data array and subsequently into
a 2-D scalar sequence, {Vo(n,k)}, by an association analogous to the
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one established in Figure (2-1). Then, the residual optimal

conventional 2-D scalar residual sequence can be compared for

whiteness with the 2-D scalar residual sequence {v(n,k)} generated by

the 2-D whitening filter designed based on the 2D-LS-FD algorithm.

Residual
Range Cell Vector Decision
Data Vector WHITENING Yok MATCHED Statistic

Figure 4-1. Conventional optimal joint-domain method in factored
form.

The level of whitening can be assessed using the whitening

ratio performance measure, which is defined herein as
N-1 J-1 nkJ210lg N-1 J1l~~)2

(4-5) WR =10 l°gl°[i• k-•0v(nk2L= -10 Ol[-• k0xnk'

This measure can be applied also to a conventional optimal joint-
domain residual by substituting Vo(n,k) in place of vo(n,k).

4.2 Simulated Ground Clutter Modeling and Filtering

In the context of time series modeling, selection of the

model structure (AR vs. MA vs. ARMA) must be carried out prior to

model order determination. However, the two issues are inter-

related in a natural manner, and one approach to analyze model

structure for a given application is to evaluate the three model

types as a function of model order. Such an analysis was carried

out in Phase I for the baseline conditions of Table 4-1, with the

following alterations: J = N = 16; and Nrd = 64 (number of
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realizations used in filter design, which becomes the number of

spectra averaged for model identification with the 2D-LS-FD
algorithm). Also, Pd=Ps=P and Qd QS= Q were assumed. Figure 4-

2 shows a plot of the 2-D residual power as a function of model

order for the 'y=O deg case and the following model structures fit

to the ground clutter return: (a) an MA(Q) model (dotted line);

(b) and AR(P) model (dash-dot line); (c) and ARMA(Q-3,Q) model

(dashed line); and (d) and ARMA(P,P) model (solid line). Notice

that the ARMA(P,P) model generates the smallest residuals

(considering a "smoothed" fit to the curves shown). This result

is appealing in the context of MIBDA for the application of

interest because the whitening filter associated with an ARMA is

also an ARMA.

The results in Figure 4-2 are based on only one generated

residual sequence for each plotted point, but similar power values

have been obtained with other independent runs. Also, the same

conclusion has been obtained with other sets of parameter values.

Therefore, the ARMA(P,P) model structure was selected for other

analyses, but additional model structure analyses will be made in

the proposed Phase II.

Consider now the ARMA(P,P) model structure as a function of

model order for the baseline conditions in Table 4-1, including
the two crab angle value options (y=0 deg and y=20 deg). Two-

dimensional residual power as a function of model order for an
ARMA(P,P) model fit to the ground clutter return is presented in

Figure 4-3 for both crab angle conditions. Each point of each

curve in Figure 4-3 is an average of twenty (20) independent runs,

which accounts for the smoother character of these two curves in

relation to the curves in Figure 4-2. In Figure 4-3 notice that

the minimum residual power is obtained with P = 6 for both

conditions. Residual power with P=6 is 25.2 dB for y=O deg,

corresponding to a -40.0 dB whitening ratio, and residual power
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with P=6 is 24.2 dB for y=20 deg, corresponding to a -41.0 dB

whitening ratio. This whitening performance is close to the

maximum value attainable, the bound set by the analytical CNR of

47.75 dB.

The parameter values in Table 4-1 were used to generate two

sets of whitening performance results, indexed by the two baseline
values of crab angle, y=0 deg and y=20 deg. Whitening results

(same conditions but different data realizations) were obtained

also for the classical optimal joint-domain method in factored

form. Those results are discussed next.

A 3-D plot of the channel output power spectrum is presented
in Figure 4-4 for the y=O deg condition. This plot is an average

of 20 independent 2-D modified periodograms ("modified" denotes

that a data window is applied prior to the FFT). For comparison,

the power spectrum of the 2-D ARMA(6,6) model identified from the

data is presented in Figure 4-5. Notice the similarity between

these two spectral-domain figures.

Figure 4-6 presents a plot of the real part of the 1-D
circular ACS of the channel 3 sequence prior to filtering for y=0

deg. This plot is in sharp contrast with Figure 4-7, which is a

plot of the real part of the 1-D circular ACS of the channel 3

residual. The filtered sequence is indeed approximately white.

Analogously, Figure 4-8 presents a plot of the real part of the I-
D circular ACS of the received signal versus spatial lag (k) across

the J=8 channels at the time instant corresponding to n=16. And

Figure 4-9 presents a plot of the 1-D circular ACS of the real
part of the residual across the J=8 channels at the time instant

corresponding to n =16. Notice that the unfiltered sequence is

highly correlated, whereas the residual is significantly less

correlated (it is difficult to assess the level of whiteness for a
short-duration sequence). These four figures correspond to y=0
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deg conditions. Also, similar results are true for the imaginary

part of the respective ACS.

Figures 4-10 and 4-11 present the real part of the circular

ACS of the residual as generated by the whitening step of the
optimal joint-domain method (see Equation (4-4)) for y=O deg

conditions. These two figures can be compared with Figures 4-7

and 4-9, respectively. For these two figures the sample

covariance matrix was generated using Nre=JN=512 independent CPI

realizations, which is the minimum number of realizations required

to obtain a full-rank covariance. This number is 25 times larger

than the number of independent realizations (Nrd=Nre=20) averaged

to generate the 2-D frequency-domain representation used to design
and to evaluate the ARMA(6,6) model. Clearly, the ARMA-based

whitening filter yields residuals with significantly less

correlation than the residuals of the optimum joint-domain method.

The whitening ratios calculated for the conventional optimal
joint-domain residual are -30.15 dB and -21.96 dB for the y=0 deg

and y=20 deg conditions, respectively. These figures are

significantly less than those for the 2-D ARMA(6,6) residuals

(which are -40.0 dB and -41.0 dB, respectively). This discrepancy

is due to the less-than-optimal (although large) number of

independent realizations used to generate the JNxJN sample

covariance matrix estimate.

Figures 4-12 through 4-19 present the same type of plots as

in Figures 4-4 through 4-11, with the following variations. First

and foremost, Figures 4-12 through 4-19 were generated for crab
angle y= 2 0 deg conditions. Second, channel 4 is selected for the

temporal lag plots, instead of channel 3. Third and last, the

spatial lag plots are for pulse n=44, instead of n=16. Careful

examination of the results presented for y=20 deg conditions re-

enforces the observations derived from the earlier figures.
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Figure 4-2. Residual power as a function of model order for 2-D

MA, AR, and ARMA models (J= N= 16; Nrd= 6 4 ; y=O deg) .
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Figure 4-3. Residual power as a function of model order for a 2-D
ARMA(P,P) model for both crab angle conditions.
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Figure 4-6. Real part of channel 3 circular ACS versus temporal
lag (r=O deg).
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Figure 4-7. Real part of channel 3 ARMA(6,6) residual circular ACS
versus temporal lag (y=O deg).
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Figure 4-8. Real part of pulse 16 circular ACS versus spatial lag
(y = 0 deg) .
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Figure 4-9. Real part of pulse 16 ARMA(6,6) residual circular ACS
versus spatial lag ().=0 deg).
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Figure 4-10. Real part of channel 3 joint-domain residual
circular ACS versus temporal lag (y=0 deg).
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Figure 4-11. Real part of pulse 16 joint-domain residual circular
ACS versus spatial lag (y=O deg).
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Figure 4-13. Two-D ARMA(6,6) log power spectrum for r=20 deg.
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Figure 4-14. Real part of channel 4 circular ACS versus temporal
lag (,y=20 deg) .
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Figure 4-15. Real part of channel 4 ARMA(6,6) residual circular
ACS versus temporal lag (y=20 deg).
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Figure 4-16. Real part of pulse 44 circular ACS versus spatial
lag (y= 2 0 deg).
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Figure 4-17. Real part of pulse 44 ARMA(6,6) residual circular ACS
versus spatial lag (y=20 deg).
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Figure 4-18. Real part of channel 4 joint-domain residual
circular ACS versus temporal lag (y=20 deg).
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Figure 4-19. Real part of pulse 44 joint-domain residual circular
ACS versus spatial lag (y=20 deg).
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5.0 CONCLUSIONS AND RECOMMENDATIONS

In Phase I the STAP problem for airborne surveillance using

phased array radar systems was formulated as a 2-D model-based

detection problem, and a 2-D innovations-based methodology was

formulated. Additionally, a model identification configuration

based on the 2D-LS-FD method was developed, and the capability to

model the received channel process (with emphasis on the ground

clutter process) with a 2-D time series models was established.

The 2D-LS-FD method (Mikhael and Yu, 1994) was selected for this

study because: (a) model coefficients are identified by solving a

linear set of equations; (b) the method is direct (algorithm

operates on the data directly, without the need to estimate the

ACS); (c) ARMA (rather than just MA or AR) coefficients are

generated; (d) the method is simple; and (e) the method is

implemented efficiently in software.

A software (MATLAB-based) implementation of the algorithm was

developed and exercised using simulated multichannel radar data

generated with the SSC-developed software model for phased array

radar in an airborne surveillance scenario (Vol. II of [Roman and

Davis, 1997]). Simulation results obtained in the study validate

the modeling capability of the 2D-LS-FD algorithm, and

demonstrated favorable performance as a whitening filter in

comparison with the conventional optimal joint-domain method using

the sample covariance.

In Phase II a MATLAB-based software package will be developed

to test STAP algorithms in the context of airborne surveillance

radar arrays. This software will include simulated radar data

generation, Monte-Carlo analyses capability, and extensive

diagnostic functions (for the statistical analysis and dissection

of intermediate and final results). Classical and parametric STAP

algorithms will be included also. This software will be applied
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to evaluate the MIBDA methodology based on 2-D hypothesis filters,

and thus establish its performance in relation to classical STAP

algorithms and to STAP methods based on various alternative

parametric algorithms (Romdn and Davis, 1993a, 1993b; Michels,

1991). The software will be generated to be compatible with the

structure of the Rome Laboratory (RL) STAP (RLSTAP) software

analysis and simulation package. This will facilitate integration

of the software into RLSTAP at a future date.

The 2D-LS-FD method will be the baseline 2-D algorithm for

Phase II due to its attractive, features and the performance

established in Phase I. Alternative formulations of the method

(such as image noise canceling) will be evaluated in the context

of the RL airborne surveillance phased array radar application, as

well as the to-be-selected dual-use application. Model stability

is an important issue for model-based methods in general, and more

so in the case of 2-D models. Other candidate algorithms will be

implemented in MATLAB-based software, and their performance

compared with that of the baseline algorithm.
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APPENDIX A. TWO-DIMENSIONAL REPRESENTATIONS FOR ONE-

DIMENSIONAL MULTICHANNEL STATE SPACE MODELS

The analytic representation of the sequence transformation

introduced in Section 2.1 (Equation (2-1)) is useful in the

understanding of 2-D systems and of the differences/similarities

between 1-D and 2-D systems in general. Furthermore, an analytic

representation is required to generate the 2-D scalar transfer

function and the 2-D scalar power spectrum of a 2-D system related

to a 1-D multichannel system. Therrien (1981) presented such a

result for the special case of a multichannel AR model, and it is

extended herein to cover state space models in innovations

representation form. Availability of the 2-D transfer function

and power spectrum corresponding to a 1-D multichannel system

allows direct comparison of the frequency domain representation of

2-D analytic models of the type presented in Section 2-2 with

state variable models (SVMs) of the type employed by Roman and

Davis (1993a; 1993b) in other model-based MIBDA work.

A.1 Transformation of a One-Dimensional Vector Sequence

Into a Two-Dimensional Scalar Sequence

Consider the I-D multichannel to 2-D scalar association in

Equation (2-1), repeated herein for convenience:

(A-l) Xj-k(n) = x(n,k) On• N-1; Ok•J-1

Recall that Equation (A-l) assumes channel J is the temporal and

spatial reference for the array. For an equally-spaced linear
array with array spacing d, the signal at channel k is a delayed

(or advanced) version of the signal at channel k-1. With channel J

as the temporal and spatial reference, it follows that
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[ x1 (n) iF ej2SK xj (n)1 ej 2 1S 1
(A-2a) Xj_l (n) xeJ2nfs xj(n) -xj (n)e-i fs n _N-1

- xj(n) JL xj(n) J

1
-j~itficeJ 2'•fs

(A-2b) x(n) = ee js2 xn (n)e (fS) 0 < n N-1

_ej21ESK

(A-2c) =J - 1

where f. is the normalized spatial frequency corresponding to an

azimuth angle 0 and an elevation angle 0 (both 0 and 0 are defined

with respect to the array boresight for a side-looking array), and

is defined as

d
(A-3) fs = d'- cos(e)sin(o)

XC

where XC is the narrowband radiation wavelength. Element k of ej(fs)
is the operator representing k-1 spatial advances. Vector ej(fs) is

referred to as the spatial frequency vector at frequency fs, and

can be expressed in terms of the spatial Z-transform variable

restricted to the unit circle as

i zS

ej2ns 1
(A-4) ]j (fs)[ e11 =

(A-5) Zs = ej2tfs
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Consequently, the spatial frequency vector can be denoted also as
ej(Zs). This alternative notation is more appropriate for analyses

involving transfer functions. From Equations (A-i) and (A-2), the

association between a 1-D multichannel vector sequence and a 2-D

scalar sequence is defined as

(A-6) x ,n=x(n)e2j(fs) <== x(n,k) Ik =0,1,..J- 1)

In Relation (A-6) the subscript "I" is dropped from the 2-D

sequence, for simplicity.

A.2 Innovations Representation State Variable Model

The innovations representation of the channel output process

{x(n)} is a linear, shift-invariant, stochastic SVM of the form

(A-7a) g(n+l) = Fcq(n) + KF_(n) n > 0

(A-7b) x(n) = HHa(n) + F_(n) n > 0

(A-7c) W() 0

(A-7d) E[9_(n)_H(n)] = -[(n) = H n # 0

where F is the nsxns system matrix, K is the nsxJ input

distribution matrix, and H is the nsxJ observation matrix. In this

model, _x(n) is the ns-element state vector, x(n) is the J-element

output vector, and {_(n)} is a zero-mean, white, Gaussian, J-element

vector sequence with correlation matrix structure given as

(A-8) E[_L(n)_H(n-m)] = fl6(m) V n, m

1 M=0
(A-9) 6(m)={ m•0m=0
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The sequence {s(n)} is referred to as the innovations, and matrix K

in Equation (A-7a) is the Kalman gain. An innovations

representation SVM has several properties and characteristics that

simplify model identification and other problems (Anderson and

Moore, 1979; RomAn and Davis, 1993b).

Consider now an instantaneous, linear transformation on the

innovations sequence based on the LDU decomposition of the
innovations covariance matrix, Q. That is,

(A-l0) y(n) = THs(n)

(A-I1) TH = D1 2 L-1

(A-12) Q = L D LH = (T'I)H T-1

In the LDU decomposition of Equation (A-12) the JxJ matrix D is

diagonal and real-valued, and the JxJ matrix L is lower-triangular

with 1's along the main diagonal. The covariance matrix of the

transformed innovations sequence is the identity matrix,

(A-13) ELy(n)YH(n-m)] = I 8(m) V n, m

This transformed innovations is both spatially and temporally

uncorrelated (Therrien, 1981). In this new basis for the input

sequence, SVM (A-7) becomes

(A-14a) g(n+l) = Fu(n) + KCv(n) n 0

(A-14b) x(n) = HH u(n) + Cv(n) n 0

where the JxJ matrix C, introduced herein for notational

simplicity, is defined as
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(A-15) C = (TH)"1 = (T 'I1)H = L D1/2

It is important to note that this alternative SVM representation

is equivalent to SVM (A-7) from an input-output perspective, but

SVM (A-14) is not an innovations representation. SVM (A-14) with
{y(n)} uncorrelated and normalized as in Equation (A-13) is referred

to herein as a generalized innovations representation.

The JxJ transfer function matrix of the SVM (A-14) is denoted
herein as TGI(Zd), where Zd is the temporal (Doppler) Z-transform

variable restricted to the unit circle,

(A-16) Zd= eJ2d

and fd is the normalized Doppler frequency shift. In terms of the
model parameters, TGI(Zd) is given as

(A-17) TGI(Zd) = TIR(Zd) C = [ HH (Zdl - F)-1 K + I ] C = HH (Zdl - F)-1 KC + C

where TIR(Zd) is the transfer function matrix of the innovations

representation, SVM (A-7). SVM (A-14) is introduced herein to
simplify the generation of 2-D frequency-domain representations
for multichannel SVMs, as shown in Section A-4.

The square matrix factor (Zdl-F)"I in TIR(Zd) contributes the

multivariable poles of the SVM. Specifically, the determinant of
matrix (Zdl-F) is a polynomial in the variable Zd whose roots are

the multivariable system poles. In contrast, all the matrices in
the transfer function expression contribute to the value of the
multivariable system zeros (the multivariable zero definition

preferred herein is that of Davison and Wang [1974, 1976]). The
dynamic behavior (in the temporal domain) of the SVM is determined

by the multivariable system poles and zeros jointly.
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A.3 Whitening Filter State Variable Model

An important feature of the innovations representation is

that SVM (A-7) is causal and causally-invertible. As such, the

inverse system is obtained directly from SVM (A-7). Specifically,

the inverse system for SVM (A-7) is

(A-18a) g(n+l) = [F - KHH ] u(n) + Ke(n) = Ag(n) + K_(n) n Ž 0

(A-18b) g(n)= -HHR(n) + x(n) n > 0

(A-18c) WO)=0

(A-18d) E[_(.(n)gH(n)] = fl(n) = 11 n # 0

where all vectors and matrices are defined previously except the

nsxns matrix A, which is defined implicitly as

(A-19) A = F-KHH

Notice that the input to this SVM is the channel output sequence,
and the output is the temporally-uncorrelated sequence {&(n)}.

Thus, SVM (A-18) is the whitening filter corresponding to SVM (A-

7). An important relation between SVM (A-7) and its inverse SVM

(A-18) is that the multivariable system poles and zeros of SVM (A-

7) are the multivariable system zeros and poles, respectively, of

SVM (A-18). Also, SVM (A-18) is an innovations representation

(the inverse system of an innovations representation is itself an

innovations representation).

Consider again the spatially-whitening instantaneous, linear

transformation applied to the innovations sequence, Equation (A-

10). Application of this transformation to the output equation of
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the whitening filter leads to the following generalized whitening

filter,

(A-20a) c(n+l) = [F - KHH ] c(n) + K_•(n) = Aa(n) + Kx(n) n 0

(A-20b) y(n) =- THHHa(n) + THx(n) n 0

As before, the innovations representation property is lost by the
introduction of the linear transformation on E(n).

The JxJ transfer function matrix of the SVM (A-20) is denoted
herein as TGw(Zd), where Zd is the temporal (Doppler) Z-transform

variable defined previously, Equation (A-16). In terms of the
model parameters, TGw(zd) is given as

(A-21) TGw(Zd) = TH TwF(Zd) = TH[ HH (Zdl -A)"' K+ I] TH HH (ZdI -A) 1 K+TH

where TwF(Zd) is the transfer function of the whitening filter, SVM

(A-18).

A.4 Two-Dimensional Frequency-Domain Representations of a

Multichannel State Variable Model

Two-dimensional frequency-domain representations are derived

next for each of two SVMs: the generalized innovations

representation (A-14), and the generalized whitening filter (A-

20). Consider first the generalized innovations representation

case. The input to the generalized innovations representation is
the generalized innovations sequence {y(n)). A relation analogous

to (A-6) can be established also for the generalized innovations;

namely,

(A-22) (n) = v 1(n) () = {v(n,k)Ik = 0, 1,..., J-l5
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Now let X(zd,Zs) and N(Zd,zs) denote the 2-D Z-transform of {x(n,k)} and

{v(n,k)}, respectively. Given these definitions and the form of SVM

(A-14), the scalar 2-D transfer function TGI(Zd,Zs) of the 1-D

multichannel system (A-14) is obtained as

(A-23) X(Zd,Zs) = TGI(Zd,zs) N(Zd,Zs)

(A-24) eH(zs)TI(z ) e(Z) eH(zs)TIR(Zd)C ej(zS)
( -) TGI(Zd,Zs) = i GIZ )e(s - ) I(d

Figure A-1 is a block diagram representation for these relations.

The factor J-1 in Equation (A-24) is required to preserve the power
between the input and output. Consider the case where TGI(Zd) is

the identity matrix. In such a case it follows that {x(n,k)}={v(n,k)},
provided the factor J-1 is included (since eH(zs)ej(Zs)=J) It is

possible to view this factor in a different way. Specifically,

the spatial frequency vector can be defined to be of unit norm,

which requires normalization of the right side of Equation (A-4)

by a factor of the form J-1/2.

{v(n,k)} _j(zs) C

•(n)} -o Txn _e z {x(n,k)}, .. IR (Zd) j(Z-)

Figure A-1. Block diagram for the 2-D scalar transfer function of
a 2-D system related to a 1-D multichannel system in generalized

innovations representation form.
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The temporal frequency content of the 2-D transfer function
TGI(Zd,Zs) is determined by the temporal dynamics (multivariable

poles and zeros) of the generalized innovations transfer function,
TGI(Zd). In turn, the spatial frequency content of the 2-D transfer

function is determined by the spatial frequency vector 9(Zs, which

inherently models a delay, but does not include spatial dynamics.

This condition may limit the capability of 1-D vector models to

represent scenarios where the coupling between channels is partial

(where the noise-free output of a given channel is not a delayed

or advanced replica of the noise-free output of the adjacent

channels). Such scenarios include cases where the crab angle is

non-zero and/or where the clutter ridge slope is different from

unity. Further analysis of the modeling capability of 1-D vector

SVM's is required to assess this issue, and will be carried out in

the proposed Phase II.

The 2-D power spectrum of the linear, shift-invariant system

in Figure A-1 is the square of the magnitude of the scalar

transfer function evaluated at the unit circle in the complex
plane (with fd and f. replacing Zd and zs in order to represent this

fact); that is,

(A-25) SGI(fd,fs) = TGI(fd,fs )T l(fd,fs) = ITGI(fdfs)12

-0.5 •! fd• 0.5  and -0.5!f f• 0.5

And the power spectrum of the 2-D channel output sequence, denoted
herein as S J(fd,s), is determined as (Anderson and Moore, 1979)

(A-26) SXX(fd,fs) = SG,(fdfs) Svv(fd,fs) = ITGI(fdfs)12 Svv(fd,fs)

-0.5 •• fd• 0.5  and -0.5:5 fs!• 0.5
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where Svv(fd,fs) is the power spectrum of the 2-D generalized

innovations sequence, {v(n,k)). Since {_(n)} is temporally and

spatially white (Equation (A-13)), it follows that

(A-27) E[v(n,k)v*(n-m,k-f)] = 6(m,f) V n, m, k, f

(A-28) 8(m,)m=0 and £=0

(A-28) 10~ mOo
fo rm#0 or t¥=0

(A-29) Svv(fd,fs) = 1 V fd, fs

Then Equation (A-26) becomes

(A-30) SxX(fd,fs) = SGI(fd,fs) = ITGI(fd,fs)1 2

-0.5 < fd < 0.5 and -0.5 < fs • 0.5

which is the desired frequency-domain representation for the

generalized innovations SVM.

Consider now the generalized whitening filter case. The
input to the generalized whitening filter is the channel output

sequence, and the output is the generalized innovations sequence.
Based on Relations (A-6) and (A-22) and on the form of SVM (A-20),
the scalar 2-D transfer function TGw(Zd,Zs) of the multichannel

generalized whitening filter is obtained as

(A-31) N(Zd,Zs) = TGW(Zd,Zs) X(Zd,Zs)
(A-32) T~ eH(zs) T H( HT

GW(ZdZs)-e(zs) TGW(Zd) ej(zs) -" - _js)TTWF(Zd) eJ(zs)
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with TGw(Zd) as defined in Equation (A-21). Transfer function

TGw(Zd,Zs) is presented in block diagram form in Figure A-2.

{x{~n) [k(n)
{x(n,k)} Pie (ZS) In TwF(Zd)

{T. I j~z) •{v(n,k)}

Figure A-2. Block diagram for the 2-D scalar transfer function of
a 2-D system related to a 1-D multichannel system in generalized

whitening filter form.

The 2-D power spectrum of the linear, shift-invariant system

in Figure A-2 is the square of the magnitude of the scalar

transfer function evaluated at the unit circle in the complex
plane (with fd and fs replacing Zd and Zs in order to represent this

fact); that is,

(A-33) SGw(fd,fs) = Tew(fd,fs)T*w(fd,fs) = IT~w(fd,fs)12

-0.5 < fd -- 0.5 and -0.5 < fs < 0.5

Equation (A-33) is the desired frequency-domain representation for

the generalized whitening filter SVM. And the power spectrum of

the 2-D generalized innovations sequence is determined as

(Anderson and Moore, 1979)
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(A-34) SVV(fdfs) = SGw(fd,fs) Sxx(fdfs) = ITGw(fdfs)12 Sxx(fd,fS)

-0. 5 -< fd -< 0. 5  and -0.5 < fs< 0.5

with Svv(fd,fs), the power spectrum of the 2-D generalized innovations

sequence, of the form in Equation (A-29).
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OF
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Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material

Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.
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